

Published on Web 05/03/2007

Copper(II)-Hydroperoxo Complex Induced Oxidative N-Dealkylation Chemistry

Debabrata Maiti, Amy A. Narducci Sarjeant, and Kenneth D. Karlin* Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218

Received March 18, 2007; E-mail: karlin@jhu.edu

In this report, we describe the generation of a new hydroperoxocopper(II) mononuclear complex which effects oxidative Ndealkylation chemistry on a substrate which is juxtaposed to the reacting Cu^{II}(⁻OOH) moiety. The interest in such an investigation derives from copper bioinorganic chemistry: (a) There remain fundamental questions concerning the inherent coordination structures and reactivity of single-copper complexes bound to dioxygen and its reduced derivatives, such as superoxide (O2-), peroxide (O_2^{2-}) , or hydroperoxide (⁻OOH).¹⁻⁴ (b) Structurally similar peptidylglycine-a-hydroxylating monooxygenase (PHM) and dopamine β -monooxygenase ($D\beta M$)⁵ effect related substrate hydroxylation reactions at a mononuclear copper center. A Cu^{II}(⁻OOH) moiety was previously implicated as the active species formed prior to $D\beta M$ or PHM substrate H-atom abstraction.⁵ More recent experimental and computational chemistries have, however, brought attention to a Cu^{I}/O_{2} -derived superoxo $Cu^{II}(O_{2}^{-})$ moiety as the likely H-atom abstracting agent.^{5–7} Still other theoretical treatments⁸ prefer a prior (rather then subsequent) O-O cleavage from Cu^{II}(-OOH) leading to a high-valent [Cu-O]²⁺ or [Cu-O]⁺⁹ moiety which effects H-atom transfer. As applied to PHM, the methylene H-atom abstraction from and subsequent rebound to the (peptide)C(O)-NHCH₂COOH substrate would give hydroxylated (peptide)C(O)-NHCH(OH)-COOH; this subsequently transforms to amine (here carboxamide) (peptide) $C(O)NH_2$ and aldehyde HC(O)COOHproducts.^{8c} Our results presented here suggest that a Cu^{II}(⁻OOH) species or a product derived from this merits further serious attention in discussions of enzyme mechanism or applications to practical chemistry.

Here, we employ the TMPA {= TPA = tris(2-pyridylmethyl)amine)} ligand framework; these derivatives or analogues have been extensively used to generate a variety of O₂-derived complexes¹⁻⁴ including binuclear Cu^{II}₂(μ -1,2-O₂²⁻) and Cu^{III}₂(μ -O²⁻)₂ and mononuclear Cu^{II}(O₂⁻)¹⁰ or Cu^{II}(⁻OOH)^{1,11} species. Masuda and coworkers¹¹ have generated the latter wherein they placed H-bonding groups off of the pyridyl 6-position TMPA "arms", stabilizing the Cu^{II}(⁻OOH) moiety. Here, we instead place there a potentially oxidizable substrate and find that such a single pyridyl 6-dimethylamino group is indeed subjected to oxidation from copper– hydroperoxide-derived chemistry.

The copper(II) mononuclear complex $[(L^{N(CH_3)_2})Cu^{II}(H_2O)]^{2+}$ (1) (as bis-perchlorate salt) was synthesized from $Cu^{II}(ClO_4)_2 \cdot 6H_2O$ plus ligand $L^{N(CH_3)_2}$ added together in acetone, precipitated with Et₂O, and recrystallized from acetone/Et₂O.¹² An X-ray structure (Figure 1) reveals a square-based pyramidal structure, with dipicolylamine (N1, N2, N3) and a water molecule in the basal plane; the pyridyl arm with a 6-dimethylamino group binds axially, Cu1-N4 = 2.3596 (17) Å.¹² The structure is likely maintained in solution, as a typical axial EPR spectrum (X-band, 77 K) for a mononuclear Cu(II) complex is observed, $g_{II} = 2.253$, $g_{\perp} = 2.052$, $A_{II} = 174$ G, $A_{\perp} = 31.5$ G. Following the method typically employed to generate hydroperoxo-Cu^{II} complexes,¹³ addition of 2–3 equiv of H₂O₂/

Figure 1. Formation and reactivity of a hydroperoxo-copper(II) complex effecting oxidative N-dealkylation of a ligand-substrate $-N(CH_3)_2$ group.

Et₃N using 50% H₂O_{2(aq)} to a greenish blue acetone solution of **1** at -80 °C gives a green product solution with complex formulated as the hydroperoxide [($L^{N(CH_3)_2}$)Cu^{II}(-OOH)]⁺ (**2**); a charge-transfer absorption maximum often seen for such species in the 350–400 nm region¹¹ is not clearly present,¹⁴ but direct evidence for **2** comes from electrospray ionization mass spectrometry (ESI-MS). Injection of -80 °C acetone solutions of **2** gives a dominant parent peak cluster with m/z = 429.02 and an expected ^{63,65}Cu pattern. When formation of **2** was instead carried out using H₂¹⁸O₂, the positive ion peak shifts to 433.15, that is, [($L^{N(CH_3)_2}$)Cu^{II}($-18O^{18}OH$)]⁺; fitting of the parent peak pattern around m/z = 433 indicates >99% ¹⁸O incorporation. The EPR spectrum of **2** is also axial, consistent with a single species that is different from **1**.¹²

 $[(L^{N(CH_3)_2})Cu^{II}(-OOH)]^+$ (2) is stable in solution at -80 °C, but warming results in a change to a darker green color. Analysis of the reaction mixture obtained by addition of Na2EDTA(aq), extraction into CH2Cl2 to remove the Cu ion, and chromatographic separation/ isolation reveals that only $\sim 14\%$ yield of the original $L^{N(CH_3)_2}$ ligand remains.12 The major (40-45%) new organic product is the oxidatively N-dealkylated compound L^{NH(CH₃)}; complementing this is the formation of formaldehyde ($\sim 40\%$) as determined from the Nash test (Figure 1).¹² Confirmation comes from X-ray analysis of a Cu^{II}-chloride derivative formed from isolated L^{NH(CH₃)}, $[(L^{NH(CH_3)})Cu^{II}(Cl)]^+$ (3).¹² The chemistry leading to $L^{NH(CH_3)}$ plus CH₂=O thus mimics the monooxygenase activity occurring in PHM (vide supra), where 2 or a product derived from it reacts with the $-N(CH_3)_2$ substrate placed in close proximity to the Cu^{II}(⁻OOH) moiety. We also observe an intermediate suggested in PHM mechanistic discussions, a product-based alkoxide, here $[(L^{N(CH_3)(CH_2O^-)}Cu^{II}]^+$ (4; diagram below). This complex with m/z= 411.12 is detected upon mass spectrometric analysis of reaction mixtures prior to removal of the Cu ion (vide supra); use of $H_2^{18}O_2$ Scheme 1

in the reaction confirms the formulation (m/z 413.20).¹² The release of Cu from **4** would directly produce the major products L^{NH(CH₃)} and CH₂=O.

Small but significant amounts of doubly oxidized (formally fourelectron oxidation products) aldehyde $L^{N(CH_3)(CHO)}$ and amine L^{NH_2} are also formed (Figure 1), likely due to the fact that the chemistry described here occurs when 2 is formed from reaction of 1 with 10 equiv of H₂O₂/Et₃N. The over-oxidized products likely derive from further reaction with hydrogen peroxide. When only 1 equiv of H₂O₂/Et₃N is used to generate $[(L^{N(CH_3)_2})Cu^{II}(-OOH)]^+$ (2), warming and workup leads to considerably more (~60%) unreacted $L^{N(CH_3)_2}$, the yield of primary mono-N-demethylated ligand substrate $L^{NH(CH_3)}$ drops to 15–20%, only 3–4% $L^{N(CH_3)(CHO)}$ is obtained and no L^{NH_2} is observed.¹² Thus, the major reaction product, the biomimetic oxidatively N-dealkylated ligand, $L^{NH(CH_3)}$, is formed in a "dose"dependent manner.

Further insights come from using $[(L^{N(CH_3)(CD_3)})Cu^{II}(-OOH)]^+$ (2-CD₃), setting up an intramolecular substrate competition, N(CH₃) versus $-N(CD_3)$ oxidation (Scheme 1). On the basis of the relative product yields after warming -80 °C solutions and workup, an apparent deuterium isotope effect of ~ 2.3 is deduced (Scheme 1).¹⁵ The $k_{\rm H}/k_{\rm D}$ observed in *PHM* is ~11,⁵ while $k_{\rm H}/k_{\rm D}$ values vary greatly (1-25) for a variety of chemical systems studied, primarily bis- μ -oxo-dicopper(III) complexes.³ Our low value is similar to that observed for oxidative N-dealkylations mediated by cytochrome P450 monooxygenase, heme synthetic analogues,¹⁶ as well as nonheme Fe^{IV}=O.^{16a} Thus, in our system, a reactive copper-based intermediate (vide infra) may initiate the oxidative process by N(CH₃)₂ methyl group H-atom abstraction; such a N-Cα H-atom abstraction or another route involving initial rate-limiting electrontransfer oxidation to give an amine radical cation and follow-up are the two mechanisms extensively discussed for enzyme/chemical iron or copper oxidative N-dealkylations.^{16,17} We note that **2-CD**₃ chemistry also leads to some aldehyde $L^{N(CD_3)(CHO)}$ (Scheme 1), but only reaction on the CH₃ group occurs as no L^{N(CH₃)(CDO)} product is detected. Formation of L^{NH_2} is also not observed.

While we and others have observed and studied oxidative N-dealkylation chemistry using well characterized dicopper complexes possessing bis- μ -oxo-dicopper(III) Cu^{III}₂(μ -O²⁻)₂ or hydroperoxo Cu^{II}₂(μ -OOH) cores,^{3,17b,c} this is the first detailed report with mechanistic insights on a discrete mononuclear copper(II)– hydroperoxide complex **2** which mediates an effective oxidative N-dealkylation reaction similar to that occurring in *PHM*.^{18–20} While a superoxo–Cu^{II} moiety may be effective as a H-atom abstracting agent,^{10,11a} the further consideration of a Cu^{II}(–OOH) entity in *PHM* or *D* β *M* mechanism is warranted. We cannot say whether the

Cu^{II}(⁻OOH) moiety or a subsequently formed high-valent Cu-oxo species is the actual initial oxidant in our system; further studies including attention to O–O cleavage and proton inventories are in progress.

Acknowledgment. This work was supported by a grant from the National Institutes of Health (K.D.K., GM28962).

Supporting Information Available: Synthetic and reactivity details, product analyses/characterization, and CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Itoh, S. Curr. Opin. Chem. Biol. 2006, 10, 115-122.
- (2) Quant Hatcher, L.; Karlin, K. D. J. Biol. Inorg. Chem. 2004, 9, 669-683.
- (3) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047-1076.
- (4) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013–1045.
- (5) Klinman, J. P. J. Biol. Chem. 2006, 281, 3013-3016.
- (6) Chen, P.; Solomon, E. I. J. Am Chem. Soc. 2004, 126, 4991-5000.
- (7) Prigge, S. T.; Eipper, B.; Mains, R.; Amzel, L. M. Science 2004, 304, 864–867.
- (8) (a) Kamachi, T.; Kihara, N.; Shiota, Y.; Yoshizawa, K. *Inorg. Chem.* 2005, 44, 4226–4236. (b) Yoshizawa, K.; Kihara, N.; Kamachi, T.; Shiota, Y. *Inorg. Chem.* 2006, 45, 3034–3041. (c) Crespo, A.; Marti, M. A.; Roitberg, A. E.; Amzel, L. M.; Estrin, D. A. J. Am. Chem. Soc. 2006, 128, 12817–12828.
- (9) Decker, A.; Solomon, E. I. *Curr. Opin. Chem. Biol.* 2005, *9*, 152–163.
 (10) Maiti, D.; Fry, H. C.; Woertink, J. S.; Vance, M. A.; Solomon, E. I.; Karlin, K. D. *J. Am. Chem. Soc.* 2007, *129*, 264–265.
- (11) (a) Fujii, T.; Yamaguchi, S.; Funahashi, Y.; Ozawa, T.; Tosha, T.; Kitagawa, T.; Masuda, H. Chem. Commun. 2006, 4428–4430. (b) Wada, A.; Honda, Y.; Yamaguchi, S.; Nagatomo, S.; Kitagawa, T.; Jitsukawa, K.; Masuda, H. Inorg. Chem. 2004, 43, 5725–5735. (c) Wada, A.; Harata, M.; Hasegawa, K.; Jitsukawa, K.; Masuda, H.; Mukai, M.; Kitagawa, T.; Einaga, H. Angew. Chem., Int. Ed. 1998, 37, 798–799.
- (12) See Supporting Information.
- (13) Fujii, T.; Naito, A.; Yamaguchi, S.; Wada, A.; Funahashi, Y.; Jitsukawa, K.; Nagatomo, S.; Kitagawa, T.; Masuda, H. Chem. Commun. 2003, 2700-2701.
- (14) Increased absorption does occur in this region; at $\lambda = 380$ nm, an absorptivity of 1200 M⁻¹ cm⁻¹ is observed.
- (15) The $k_{\rm H}/k_{\rm D}$ of 2.4 is based on ¹H NMR spectroscopy of product solutions (Scheme 1); ESI-MS data give $k_{\rm H}/k_{\rm D} = 2.2$, thus the average = 2.3. These calculations do not include any consideration of $\mathbf{L}^{N(\mathbf{CD}_3)(\mathbf{CH}_0)}$ formation, which could transform to additional $\mathbf{L}^{NH(\mathbf{CD}_3)}$ product; if this occurred, $k_{\rm H}/k_{\rm D}$ would even be larger, as pointed out by reviewers. Note that comparisons of our $k_{\rm H}/k_{\rm D}$ with literature values are difficult to interpret since we cannot yet ascribe a specific temperature to our $k_{\rm H}/k_{\rm D}$.
- (16) (a) Nehru, K.; Seo, M. S.; Kim, J.; Nam, W. Inorg. Chem. 2007, 46, 293–298. (b) Bhakta, M.; Hollenberg, P. F.; Wimalasena, K. Chem. Commun. 2005, 265–267. (c) Ortiz de Montellano, P. R. Cytochrome P450 Monooxgenase, 3rd ed.; Kluwer Academic/Plenum Publishers: New York, 2005. (d) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947–3980.
- (17) (a) Shearer, J.; Zhang, C. X.; Zakharov, L. N.; Rheingold, A. L.; Karlin, K. D. J. Am. Chem. Soc. 2005, 127, 5469–5483. (b) Itoh, K.; Hayashi, H.; Furutachi, H.; Matsumoto, T.; Nagatomo, S.; Tosha, T.; Terada, S.; Fujinami, S.; Suzuki, M.; Kitagawa, T. J. Am. Chem. Soc. 2005, 127, 5212–5223. (c) Li, L.; Sarjeant, A. A. N.; Karlin, K. D. Inorg. Chem. 2006, 45, 7160–7172.
- 2000, 42, 1100^{-112.}
 (18) Cu^{II}(O₂⁻) or Cu^{III}₂(μ-O²⁻)₂ complexes are unlikely to be involved in the present system. A -80 °C O₂ reaction of a copper(I) complex of L^{N(CH₃)₂}, [(L^{N(CH₃)})₂, [(L^{N(CH₃)})₂, [(L^{N(CH₃)})₂])¹⁺ (5) leads to a species with Cu^{III}₂(μ-O²⁻)₂ spectroscopic signatures;¹² warming to rt and workup affords only 7% N-dealkylated product L^{NH(CH₃)} and 3% L^{N(CH₃)}(C^{HO)}. Dipicolylamine is also detected, indicating a completely different position of attack and oxidative chemistry by the Cu^{III}₂(μ-O²⁻)₂ core. A copper(I) reaction with O₂ would necessarily proceed through a Cu^{II}(O₂⁻) initial species, suggesting this is not important in the oxidative chemistry observed.
- (19) There are literature examples where oxidative C-N cleavage occurs from reactions with O₂, H₂O₂, or other oxidants, where copper complex characterization is unavailable.^{20a-c} Also, amine oxidation can occur by initial electron transfer from high redox potential Cu complexes.^{20d,e}
- (20) (a) Karlin, K. D.; Gultneh, Y. Prog. Inorg. Chem. 1987, 35, 219-327.
 (b) Capdevielle, P.; Maumy, M. Tetrahedron Lett. 1991, 32, 3831-3834.
 (c) Nishino, S.; Kunita, M.; Kani, Y.; Obba, S.; Matsushima, H.; Tokii, T.; Nishida, Y. Inorg. Chem. Commun. 2000, 3, 145-148. (d) Reddy, K. V.; Jin, S.-J.; Arora, P. K.; Sfeir, D. S.; Maloney, S. C. F.; Urbach, F. L.; Sayre, L. M. J. Am. Chem. Soc. 1990, 112, 2332-2340. (e) Wang, F.; Sayre, L. M. Inorg. Chem. 1989, 28, 169-170.

JA0719024